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On the isotropic temperature factor equivalent to a given anisotropic temperature factor.}
By W.C. Hamirron, Chemistry Department, Brookhaven National Laboratory, Upton, Long Island, New York,

U.S.A.

(Received 23 January 1959 and in revised form 18 February 1959)

In view of the current trend toward routine determination
of anisotropic temperature factors in crystal structure
analyses, it seems worthwhile to define an isotropic
temperature factor which we shall call equivalent to the
anisotropic components. There are a number of situations
where such a definition may be convenient. If anisotropic
temperature factors have been determined and the devia-
tions from isotropy do not appear to be significant or
seem physically unrealistic, it would seem wise to include
in the report of such an investigation the values of the
equivalent isotropic B’s. Furthermore, a more rapid
comparison can be made between the temperature
factors for different projections of the same structure or
for different structures if the equivalent B’s are given.
In the author’s experience, occasion has also arisen to
change from anisotropic refinement to isotropic refine-
ment when it appears that the data is not sufficient to
determine meaningful anisotropic values. Provision can
be made to include such a change automatically during
the course of a least-squares refinement by an electronic
computer.

Matrix notation provides a concise and elegant presen-
tation of the desired results. We define the following
matrices (the primes denote transposes):

X' = (2y275) , (1)
a vector with components referred to the cell axes
A’ = (a,a,a,). (2)
The vector in direct space defined by X’ is then given by
X’A =z,a,+z,a,+ 2,2, . (3)
Further
S’ = (2nh 25k 2nl) (4)

is a vector with components along the reciprocal axes
A* with A* defined by

A*A’'=1T. (5)1
It may be shown (Busing & Levy, 1958) that
(AA)T = A*A¥, (6)

a result which will be used below.

T Research performed under the auspices of the U.S.
Atomic Energy Commission.

I The use of the 3 x 1 matrices A and A* to describe the
vector triples in direct and reciprocal space, implicit in the
discussion of section 2-5 of the International Tables (1952),
is extremely convenient in a variety of circumstances, and,
in the author’s opinion should be more generally used in
discussions of this type. In performing operations involving
these matrices, one need only remember that a;a; is to be
interpreted as a;- aj, and hence that multiplications involving
more than two of these matrices do not in general obey the
associative law of multiplication. For example, (AA’)(AA’)
is not equivalent to A(AA’)A’.
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It has been shown (Cochran, 1954)§ that if the thermal
motion of an atom is described by

p(X) = [M2z3 exp (—X'MX) M
then the scattering factor must be multiplied by
t(S) = exp [—S'BS] (8)
with the femperature factor matrix B defined byt
B =1M-1 (9)

It may be shown (Waser, 1955) by a transformation to
orthogonal axes and integration that the mean value of
72 is given by

(r?) = (X'AA’X) = 2Tr(BAA) . (10)
But this may be shown to be equivalent to
(r?y = 2A’BA . (10a)

Now for isotropy of thermal motion we know that

t(S) = exp [— B sin? §/42] (11)

B
= _ S A1 1
exp[ Iﬁnzs(A ) S} (11la)
i.e.

5 _(AAY)-1,

To? (12)

Bisot,ropic =
Given an anisotropic thermal motion, we define the
equivalent isotropic motion as that which gives rise to

the same value of 72 (the same value of the energy in
the first vibrational state). Thus we may write

A'(AA)TA = A’'BA, (13)
16x2
or, noting that A’(AA’)"1A = 3,
1 2
B = % A’BA.. (14)

Frequent practice among crystallographers is to refine
the components of a matrix b such that
H'PH = S’'BS (15)
with
H' = (hkl) . (16)
§ Cochran discusses the relationship between the isotropic
and anisotropic temperature factors, and, specifically, intro-
duces a distorted reciprocal lattice for aid in graphical deter-
mination of the anisotropic temperature factor once the
components of thermal vibration are known.
1 Equations (8) and (9) follow from (7) provided that the
scattering center and hence f(S) are spherically symmetrical
in the absence of thermal motion.
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It follows that
b = 42°B (17)
and that
(18)

B = $ADA = 3 X I by(ai-a)) .
T

If some of the components of the b matrix are un-
known, for example, if refinement is carried out in two
dimensions only, one may still obtain an equivalent
isotropic temperature factor by assuming that the
unknown components of the anisotropic matrix and the
isotropic matrix are identical, i.e., we may set

B -

. g (A¥A*)y (19a)

by virtue of (6).

Suppose we have refined an [001] projection; we may
write

Acta Cryst. (1959). 12, 610

SHORT COMMUNICATIONS

r
bll b12

B
vy a*c* cos g*

B
b= b bye 1 b*c* cos o*

(20)

B B B

—a*c* cos f* —b¥*c* cos a* — c*?

4 4 4 P,
and applying (18), we find after some manipulation that
the equivalent isotropic temperature factor is

T T (ec*y

It should be pointed out that the equivalent isotropic

temperature factor defined here is not necessarily that

which would minimize the least-squares error. This could

be found only by taking into account the least-squares
error matrix for the individual components.

[a®by; +ab cos p(2b;,) +b%by,] . (21)
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A general method for determining film-to-film scaling constants. By R. E. Dickerson, M. R.C.
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In a recent short communication, Kraut (1958) has
proposed a systematic method of scaling a set of mutually
intersecting reciprocal lattice planes obtained using zero-
level precession camera photographs. The purpose of this
paper is to propose an alternative method applicable
where not all planes are mutually intersecting, as when
upper level photographs are used.

Kraut’s method may be briefly summarized as follows:
If k; is the desired scaling constant for reciprocal lattice
plane ¢ or film ¢, and if 7 is the average value of the
reciprocal-point-by-point ratio between reflections oc-
curring on films 4 and j, or ry; = {Ijpu)/Licniry)» then the
desired constant for film 7 is given by:

N e (120
ki — [HL "‘} )
j=17§iTnj

where n is the total number of planes and k, is arbitrarily
chosen to be unity. The criterion leading to this equation
is the minimization of the following function with respect

to all log &;’s
n n ki 2
Plony) = 3 X (o =logra) . (@

=1 j=1 7
This approach is inapplicable to upper level photographs,
in which case there are planes which do not intersect,
for here r;; and rj; are indeterminate quantities. It is not
correct simply to omit such terms from the product,
for this implicitly assumes that r;j/r;; = 1, which could
be true only if the scaling constants for the two planes
were identical.

In the process of obtaining data for a Fourier synthesis

of myoglobin with 2 A resolution we collect twenty-two
sets of zero and upper level precession photographs,
of the type h,n,l(n =0 to 6), h,k,n (n =0 to 6),
and h, k, k—n (n = 0 to 7). We have found the following
to be a convenient method of scaling these films so as to
make the maximum possible use of film intersection.
Define J;; as the sum of all reflections on film ¢ which
are common to film j, and Jj; as a similar sum on film j.
Because of reciprocal-space symmetry these may lie on
more than one row. If ¢« and j do not intersect, then
Jij = Jj; = 0, but both may be considered formally as
present. Define k; as the desired scaling constant for film j.
If there were no experimental errors then the ‘residual’
for one pair of planes would be zero when proper scaling
constants were used: e;; = k;J;j—kjJ; = 0. This is never
realized, but the best set of k’s will be that minimizing
the sum of squares of residuals, the sumn being taken over
all pairs of intersecting films. From a formal viewpoint
the sum may be taken over all possible combinations of
planes with the above stipulation about J values of non-
intersecting planes.

n n
E =3 3 (kiJij—kjJji)* . (8)
i=1j=1
Differentiation with respect to a particular k; yields:
n
Zl(kiJ?j—ijjiJij) =0, 4)
]=
For convenience, J;; may be defined as zero, since the

terms with j = ¢ cancel.
Changing to a more convenient nomenclature, let:



